Содержание
- 1 Устройство и порядок формирования изображения
- 2 Характерные неполадки и их вероятные причины
- 3 Алгоритм определения неисправности и ремонт
- 4 Непосредственный ремонт
- 5 Что такое плазменный телевизор и технологии
- 6 Достоинства плазменных телевизоров
- 7 Недостатки плазмы
- 8 Чистка экрана
- 9 Стоит ли брать плазму?
- 10 История
- 11 Конструкция
- 12 Принцип действия
- 13 Преимущества и недостатки
- 14 Примечания
- 15 Ссылки
“У меня дома ПЛАЗМА“, – не правда ли, красиво звучит, под этим понимается что-то очень большое и красивое Сейчас “плазмой” дразнят практически все плоские телевизоры, даже маленькие. Согласитесь, слово “плазма” звучит гораздо круче, чем ЖК или LCD, LED (какой-то непонятный набор букв ), этим и объясняется подсознательная тяга к чему-то такому огромному и завораживающе-непонятному слову плазма. И действительно, когда видишь перед собой такою плазменную панель:
то стоишь перед ней и не понимаешь, почему она ещё не у меня дома? Ну что ж, давайте всё-таки разберёмся, что же такое плазменная панель и как она работает. Кто не очень сильно храпел на уроках физики, помнит, что вещество (вода, к примеру или металл…) может находится в трёх состояниях: твёрдом (лёд), жидком (вода) или газообразном (пар), так вот, плазма – это четвёртое состояние вещества. Она представляет собой ионизированный газ (газ, в котором очень много заряженных частичек, как воздух после грозы, только гораздо сильнее)
Если в газ (нейтральный) запустить очень много электронов (они имеют отрицательный заряд “-“), они будут сталкиваться с атомами газа и выбивать из них другие электроны. Атом, потеряв электроны, становится ионом (имеет положительный заряд “+”). Когда электрический ток проходит через образовавшуюся плазму, отрицательно и положительно заряженные частицы притягиваются друг к другу, столкновения “возбуждают” атомы газа в плазме, заставляя их высвобождать энергию в виде фотонов.
В плазменных панелях используются в основном инертные газы – неон и ксенон. В состоянии “возбуждения” они испускают свет в ультрафиолетовом диапазоне, невидимом для человеческого глаза, однако, его можно использовать для высвобождения фотонов видимого спектра
Патент на изобретение “плазменной панели”, хотя правильнее говорить “плазменного дисплея” был выписан в 1964 на имена трёх человек: Дональда Битцера, Жене Слоттова и Роберта Вильсона. Первый плазменный дисплей состоял всего из одного пикселя (!!!), естественно, что из него никакого изображения, кроме точки, получить было нельзя, тут был важен сам принцип. Не прошло и десяти лет, как приемлемые результаты были достигнуты, в 1971 году фирме Owens-Illinois была продана лицензия на производство дисплеев Digivue.
В 1983 году Университет Иллинойса заработал ни много ни мало, миллион долларов за продажу лицензии “на плазму” компании IBM – сильнейшему игроку, на то время, в области компьютерных технологий. Перед Вами модель 1981 года “PLATO V“, с монохроматическим дисплеем оранжевого свечения:
Всё бы хорошо, да только LCD дисплеи, появившиеся в начале 90-х, стали уверенно вытеснять “плазму” с рынка. К сожалению, создать маленькие пиксели (как у LCD) было не так просто, да и яркость с контрастностью оставляли желать лучшего
Никто не знает, чтобы было дальше, если бы технологией плазменных панелей не занялась компания “Matsushita“, известная сейчас как “Panasonic“. В 1999 году был, наконец, создан, перспективный 60-дюймовый прототип с замечательными яркостью и контрастностью, превосходящими их “жидкокристаллические” аналоги Вот как выглядит плазменный телевизор без задней крышки:
Давайте посмотрим, как устроена плазменная панель и каким образом она работает. В плазменных панелях ксенон и неон содержится в сотнях маленьких микрокамер, расположенных между двумя стеклами. С обеих сторон, между стеклами и микрокамерами, располагаются два длинных электрода. Управляющие электроды расположены под микрокамерами, вдоль тылового стекла. Прозрачные сканирующие электроды, окруженные слоем диэлектрика и покрытые защитным слоем оксида магния, расположены над микрокамерами, вдоль фронтального стекла
Электроды расположены крест-накрест во всю ширину экрана. Сканирующие электроды расположены горизонтально, а управляющие электроды – вертикально. Как вы можете видеть ниже, на диаграмме, вертикальные и горизонтальные электроды формируют прямоугольную сетку. Для ионизации газа в определенной микрокамере, процессор заряжает электроды непосредственно на пересечении с этой микрокамерой. Тысячи подобных процессов происходят за долю секунды, заряжая по очереди каждую микрокамеру.
Когда пересекающиеся электроды заряжены (один отрицательно, а другой положительно), через газ в микрокамере проходит электрический разряд. Как было сказано ранее, этот разряд приводит заряженные частицы в движение, вследствие чего атомы газа испускают фотоны ультрафиолета, которые, в свою очередь, заставляют светиться фосфорное покрытие микрокамер, выбивая из них фотоны основных видимых цветов.
Каждый пиксель плазменной панели состоит из трёх микрокамер (субпикселей): красногозелёного и синего (как в кинескопных телевизорах), чем меньше размер пикселей в дисплее, тем более чётким получается изображение
Плазменные дисплеи отличаются хорошей яркостью, чёткостью и красивой цветопередачей. В отличии от LCD и LED (жидкокристаллических дисплеев), которые работают на “просветку”, плазма светит сама, обеспечивая красивый и глубокий чёрный цвет и замечательную контрастность изображения практически с любого угла обзора. Цифровых тормозов и глюков на ней практически незаметно, однако, разер пикселей немного больше, чем у ЖК, поэтому размер плазменной панели (обычно) начинается от 32 дюймов
К недостаткам плазмы можно отнести немалую стоимость и большое потребление электроэнергии. Если у Вас дома есть маленькие дети, учтите, что одного удара мячиком или другой игрушкой может быть достаточно для того, чтобы вся плазменная панель отправилась на свалку (там нет 5-10 сантиметрового стекла перед экраном, как в кинескопах)
Частые вопросы: выгорают ли пиксели на плазме и радиоактивное излучение? Ультрафиолет действительно опасен, но, благодаря переднему защитному стеклу, величина его опасности равна нулю. Вы пробовали позагорать за стеклом? Тут тоже самое, стекло не пропускает ультрафиолетовые лучи, поэтому опасаться абсолютно нечего. Выгорание пикселей – хоть многие утверждают, что его нет, но оно есть, поэтому не нужно долгое время оставлять неподвижную картинку на экране (долго – это несколько дней, за час-два ничего не случится)
Помните, что телевизор с плазменной панелью, какой бы он не был хороший, тоже может выйти из строя, а его ремонт – вещь весьма сложная и недешёвая, покупая такого красавца, как на картинке, будьте готовы к его соответствующему обслуживанию.
Главная » Статьи » Мир телевизоров » Устройство и принцип работы плазменной панели
Ссылка на этот материал:https://rem-tv.net/node/53
10.08.2015 | 54 313 | 8
Плазменная панель, или газоразрядный экран – это популярная разновидность монитора, изображение на котором создается благодаря свечению специального люминофора под воздействием ультрафиолета, возникающего при контролируемом электрическом разряде.
Как устроена плазменная панель
Сердцем панелей является матрица, состоящая из множества газонаполненных ячеек, которые располагаются посередине двух стеклянных пластин с прозрачными электродами (шинами), служащими для контроля работы подсветки. Шины имеются на передней и задней стеклянной пластине. Передающийся по передним электродам разряд через газ проходит на принимающую шину на задней пластине. Он подается разрознено по электродам расположенным горизонтальными рядами и столбцами. В зависимости от подаваемого разряда осуществляются различные способы свечения газа в каждой ячейке.
Ячейка является пикселем панели. Ее размер составляет всего 200 мкм на 200 мкм на 100 мкм. В качестве заполняющего газа используется неон или ксенон с добавлением ртути. В целом принцип действия выглядит следующим образом. Сначала происходит инициализация, по результатам которой электронное управление определяет, куда необходимо отправить заряд. По результатам его прохождения образовывается свечение люминофора, которое может быть синим, красным или зеленым. Различные способы комбинирования данных цветов позволяет получать и другие оттенки, которые воспринимаются глазами человека весьма реалистично.
Достоинства и недостатки
К явным достоинствам использования плазменной панели можно отнести:
- Контрастное изображение.
- Глубокие цвета.
- Равномерная передача черного и белого.
- Продолжительный ресурс работы.
Фактически, если обеспечить плазменный монитор нормальными условиями, то он может прослужить до 30 лет. При эксплуатации без скачков напряжения, экран работает без каких-либо осложнений. В связи с этим его покупка является более выгодной в сравнении с ЖК монитором, ресурс которого составляет всего 10 лет.
К недостаткам, которыми обладает плазменная панель, можно отнести:
- Высокое потребление энергии.
- Крупные пиксели.
- Наличие эффекта памяти.
Что касается высокого потребления электричества, то это весьма условно. Если проводить сравнивание с главным конкурентом, а именно ЖК-дисплеем, то плазмы действительно сжигают больше. Фактически при регулярном просмотре телевизора счета за электроэнергию будут вполне приемлемыми. Более весомым недостатком являются крупные пиксели. Если сидеть возле экрана слишком близко, то картинка будет состоять из довольно крупных заметных глазу кубиков. Данная проблема решается весьма легко – нужно выбирать экран побольше, и просматривать фильмы сидя от него подальше.
Гораздо большим недостатком является эффект памяти, которым обладает панель. Дело в том, что наблюдается выгорание точек экрана при постоянном просмотре неподвижного изображения. Такое можно увидеть при частом просмотре одного телеканала. На телевидении осуществляется трансляция подвижного видео с наличием неподвижного логотипа в правом верхнем углу. Если не переключать каналы, то со временем происходит перегрев люминофора в отдельных ячейках, в результате наблюдается его испарение. Как следствие, такие зоны становятся менее яркими. В дальнейшем переключив канал можно увидеть потемнение по контуру логотипа, который часто просматривался.
Чем отличается панель от телевизора
На первый взгляд может показаться, что плазменная панель и телевизор это одно и то же. Действительно внешне они выглядят одинаково, но существенно отличаются между собой. Телевизор является полностью готовым устройством, которое не нуждается в дополнительном оснащении кроме антенны. У него имеется собственный преобразователь сигнала для вывода изображения на экран, а также акустические колонки. В случае с панелью для просмотра изображения требуется дополнительное оснащение. Она представляет собой исключительно только дисплей для вывода картинки. По функционалу панель полностью идентична монитору настольного компьютера. Чтобы просматривать фильмы потребуется приобрести домашний кинотеатр, который будет преобразовывать видеосигнал, а также акустические колонки. В конечном счете затраты на такое оборудования будут в разы выше, чем изначальная покупка телевизора.
Как выбрать диагональ
Покупная панель в первую очередь необходимо посмотреть на диагональ устройства. Конечно, большой дисплей способен принести массу удовольствия при просмотре фильмов, но во всем должна быть мера. Крупный экран на близком расстоянии просматривать не слишком удобно. В связи с этим планируя его устанавливать в небольшом помещении, когда нет возможности поставить диван или кресло подальше, лучше остановить свой выбор на более компактной панели.
Чтобы определить подходящий размер диагонали следует провести измерения – замерить расстояние от стены, где будет закреплена плазменная панель, до места зрителя:
- 1 м – 17″.
- 2 м – 25″.
- 3 м – 40″.
- 4 м – 50″.
- 6 м – 80″.
Стоит отметить, что если фактически окажется, что расстояние от месторасположения дисплея до зрителя будет минимальным и потребуется миниатюрный экран, то нет смысла покупать плазменную панель. Дело в том, что на небольшой диагонали преимущества качественного изображения будут слабо выражены. В этом случае можно остановиться на более дешевом ЖК мониторе, что никак не повлияет на удовольствие от просмотра фильмов. Если требуется плазменная панель размером больше 40″, тогда безусловно есть смысл остановиться на плазме.
Разрешение экрана
Очень важным критерием выбора является разрешение экрана. Именно от него зависит общее количество пикселей, которые формируют картинку. Чем выше разрешение, тем дороже панель. Огромным недостатком экранов с низким разрешением является наличие видимых точек на близком расстоянии. В связи с этим не нужно гнаться за большой диагональю, к примеру, 50 дюймов, параметры которой составляет всего 1024×768 пикселей. Такой показатель идеален небольших мониторов, но для крупных это неприемлемо. В идеале делать покупку в обычном магазине техники, чтобы посмотреть на включенную панель с того расстояния, на котором она будет просматриваться дома. Если качество картинки на такой дистанции устраивает, то монитор можно спокойно покупать, не опасаясь, что в дальнейшем он станет разочарованием. Еще лучше, если бюджет покупки позволяет, сразу приобрести панель с разрешением Full HD, тогда качество картинки будет безупречным по всем параметрам.
Частота изображения
Также немаловажным параметром при выборе панели является частота изображения. Она отображает скорость мерцания картинки. Чем выше этот показатель, тем комфортнее человеческому глазу смотреть на экран. Для панелей, которые не имеют функции 3D, достаточно частоты около 200 Гц. Практически нет смысла переплачивать за более высокие показатели, поскольку человеческий глаз не сможет их воспринимать.
В том случае, когда покупается плазменная панель с возможностью просмотра 3D видео, тогда частота развертки должна составлять уже 500−600 Гц. Столь большая разница от 200 Гц связана с техническими параметрами сочетаемости технологии плазменной передачи изображения и 3D функции.
Похожие темы:
РубрикаЭЛЕКТРОНИКА
Плазменные экраны (их иногда называют панелями) известны большинству потребителей по работе в современной вычислительной технике и телевизионных приемниках. Обычно с их помощью удается получить качественное изображение, недостижимое никакими другими средствами отображения. Несмотря на заявленную производителем высокую надежность эти высокотехнологичные изделия все же нередко ломаются. В ряде случаев вернуть плазменную панель в рабочее состояние удается без привлечения специалистов.
Устройство и порядок формирования изображения
Основой конструкции современной плазменной панели является так называемая «матрица», которая набирается из множества герметичных ячеек микронного размера (ее фото приведено ниже).
В процессе производства они наполняются особым инертным газом (в этом качестве обычно используются такие распространенные его разновидности как ксенон или неон). А при работе панели они управляются сигналами от стороннего встроенного в устройство модуля.
Важно! Каждая пиксель-ячейка, входящая в состав матрицы, представляет собой электрически зараженный конденсатор, к обкладкам которого подведены два электрода.
При поступлении управляющего высоковольтного напряжения скопившийся электрический разряд мгновенно ионизирует газы и переводит их в плазменное состояние.
Под ее воздействием в ячейках инициируется излучение в ультрафиолетовом диапазоне, а также в видимом спектре, которое после прохождения специального фильтра воспроизводит картинку на экране дисплея. Цветовая окраска конкретной ячейке придается путем деления ее на три более мелких пикселя, ответственных за формирование цветов основного спектра (красного, синего и зеленого). Интенсивность свечения каждого из них задается с блока управления панелью, в котором за эту функцию отвечает специальный видеопроцессор, формирующий 8-битовый импульсный код.
Характерные неполадки и их вероятные причины
Наиболее распространенные неисправности, часто встречающиеся в устройствах, оборудованных плазменными панелями, подразделяются на следующие виды:
- Нарушение свечения экрана, проявляющееся в полном или частичном пропадании воспроизводимого ранее изображения.
- Отсутствие хорошо различимой картинки (свечение в этом случае совсем не пропадает, а на экране видны одни лишь муары или характерные помехи).
- Самопроизвольное отключение панели при работе воспроизводящего изображение устройства.
- Механическое повреждение рабочей части дисплея.
- Неисправность соединительных ленточек, подводящих к панели напряжение питание и сигналы управления.
Каждая из перечисленных неисправностей нуждается в более детальном рассмотрении.
Причиной нарушений в свечении экрана дисплея являются либо повреждения отдельных ячеек, или же пропадание управляющего сигнала, формируемого видеопроцессором.
Обратите внимание: Частный случай рассматриваемой неисправности – выгорание отдельных пикселей матрицы (обычно эта неполадка классифицируется как повреждение слоя люминофора).
В ситуации, когда различимо одно «белое» поле (изображение полностью отсутствует) неисправность может скрываться в узле генерирования и усиления сигнала с материнки (смотрите картинку ниже).
Самопроизвольное отключение панели в большинстве случаев происходит по причине перегрузок в БП устройства, в состав которого входит дисплей (это обычно случается из-за резкого всплеска тока в цепях питания).
Повреждение дисплея или же пропадание контактов в подводящем шлейфе устраняются простой заменой этих составляющих телевизора или ноутбука.
Алгоритм определения неисправности и ремонт
Специалистами по ремонту высокотехнологичной техники разработаны особые алгоритмы поиска характерных неисправностей, встречающихся при эксплуатации плазменной панели в составе отдельного устройства. Согласно этим разработкам ее нахождение увязывается с причиной возникновения данной неисправности. После такой привязки к конкретным аппаратным средствам обнаружить источник повреждения удается быстрее.
Дополнительная информация: Причиной большинства простейших неисправностей являются нарушения в функционировании инициирующего его работу блока питания (смотрите фото ниже)
Наличие напряжений, выдаваемых питающим модулем, проще всего проверить с помощью тестера, включенного в соответствующий режим измерений.
Они проверяются по типовой карте напряжений, прикладываемой к устройству, в состав которого входит поврежденная панель. Следующий шаг – это проверка наличия сигналов, поступающих с основной управляющей платы («MAIN-board»). Для этого удобнее всего воспользоваться осциллографом, имеющим высокую чувствительность и расширенный частотный диапазон. Только убедившись в наличии всех питающих напряжений и управляющих сигналов можно перейти к очередному этапу – обследованию и проверке соединительных шлейфов.
Непосредственный ремонт
Ремонт плазменных панелей с учетом выявленных неисправностей сводится к следующей последовательности действий:
— замена «нерабочих» модулей новыми блоками;
— при обнаружении механических повреждений или следов раскалывания потребуется полная замена всей панели;
— если причиной обнаруженной неисправности стали соединительные шлейфы – сначала следует попытаться восстановить пропавший контакт;
— в случае если и это не помогает – проще будет заменить ленточку новым соединительным элементом.
Обратите внимание: В ситуации, когда ни одно из предпринятых действий не приносит нужного результата – придется обратиться к специалистам.
В специализированной ремонтной мастерской при наличии нужной измерительной аппаратуры опытным мастерам найти и устранить обнаруженную неисправность будет намного проще.
В заключение отметим, что при ремонте плазменной панели следует быть очень осторожным и стараться не повредить ее чувствительные элементы (пиксели) случайным прикосновением к ним острыми предметами.
Все вопросы можете задавать в наших группах: ВКонтакте и в Одноклассниках
Удачных ремонтов!
Плазменные технологии реализовали мечту о «плоском телевизоре», который можно повесить на стену как картину. Первый полноценный плазменный телевизор создали в Японии в 90-х годах. С 1997 года компания Panasonic запустила аппараты в массовое производство. Первые плазменные телевизоры имели разрешение экрана не более 852 х 480 пикселей при диагонали 42 дюйма.
Что такое плазменный телевизор и технологии
Схемы современных плазменных телевизоров, при наличии сходства с телевизорами LCD, имеют свои особенности.
Устройство плазменного телевизора
Плазменная панель (PDP – Plasma Display Panel) состоит из миллионов пикселей-ячеек, наполненных газом (ксеноном или неоном). Ячейки размещены между двумя стеклянными пластинами. При подаче электрического заряда на ячейки газ переходит в агрегатное состояние, которое в физике называют плазма. Вот, что значит плазменный телевизор. Отсюда и произошло название технологии.
Как работает плазменный телевизор
Принцип работы плазменного телевизора основан на явлении свечения газа в ячейках при пропускании через него электрического тока. В сущности, плазменная панель представляет собой матрицу из миниатюрных флуоресцентных ламп. Каждая ячейка является своеобразным конденсатором с электродами и состоит из трех микроламп с ионизированным газом.
После подачи разряда плазма излучает ультрафиолет. Красная, зеленая или синяя микролампа начинает светиться. Ультрафиолетовое излучение задерживается стеклом, а видимый свет преобразуется через сканирующий электрод в изображение, которое появляется на экране плазменного телевизора.
Электрическим полем управляет компьютер. Яркость свечения каждой ячейки определяет уровень подаваемого напряжения. Таким способом из трех основных цветов получают практически любой цвет и оттенок.
Полученное по такой технологии изображение – яркое и четкое. Каждая ячейка излучает свой свет самостоятельно, и дополнительная подсветка плазменного телевизора, в отличии от жидкокристаллических собратьев, не требуется.
Размер плазменной ячейки достаточно велик. Создать маленький плазменный телевизор с высоким разрешением технологически очень сложно и экономически не выгодно. В основном аппараты изготавливают с диагональю 42 дюйма и более.
Достоинства плазменных телевизоров
Контрастность является одной из наиболее важных характеристик качества изображения. Картинка на экране с высокой контрастностью будет выглядеть более реалистичной и пространственной. Это самый большой плюс, по сравнению с ЖК-технологией.
Основные плюсы плазменных телевизоров:
- высокая контрастность;
- максимально широкие углы обзора ;
- глубокий насыщенный черный цвет;
- качественное изображение с высокой цветопередачей;
- более «мягкая» для зрения картинка;
- высокая скорость обновления изображения;
- толерантное отношение к сигналу невысокого качества;
- улучшенная передача динамических сцен, это важно при просмотре спортивных соревнований и фильмов в жанре «экшн»;
- большой срок службы – до 35 лет.
Недостатки плазмы
Недостатки плазменных телевизоров:
- отсутствие моделей с малой диагональю;
- нагрев при длительном просмотре;
- высокое энергоемкость: потребление электроэнергии плазменным телевизором 42 дюйма составляет примерно 160 — 190 Вт/час и 0,5 Вт в режиме ожидания;
- возникновение остаточных изображений на статичных элементах;
- яркость уступает телевизорам LCD.
Много электроэнергии уходит на преобразование инертного газа в плазму. Для охлаждения предусмотрены вентиляторы, которые дополнительно увеличивают энергопотребление плазменных телевизоров.
Контрастность плазмы со временем уменьшается, и через несколько лет использования изображение становится не таким красочным как вначале.
Выгорание пикселей у плазмы может происходить при подаче на экран статического изображения, например, при подключении к компьютеру. При обычном просмотре это явление может совсем не происходить. Новые модели телевизоров проблем выгорания пикселей практически не имеют.
Чистка экрана
Неправильный уход за телевизором приведет к появлению различных пятен на экране, бликов, царапин, что не будет способствовать комфортному просмотру. Пыль на экране накапливает статическое электричество. Надо учитывать, экран плазменного устройства состоит из нескольких слоев, каждый из которых чувствителен к воздействию агрессивных химических препаратов.
Общие рекомендации, как почистить поверхность экрана плазменного телевизора:
- чистку проводить в комнате с достаточным освещением;
- отключить телевизор от сети – правило техники безопасности, подождать пока он полностью остынет;
- для удаления пыли использовать мягкую ткань без ворса: из хлопка, флиса или фланели;
- для удаления загрязнений использовать рекомендованные чистящие средства;
- нельзя давить на экран, использовать скребки;
- не распылять спецсредства непосредственно на экран. Для этого подойдет салфетка из микрофибры или мягкая ткань без ворса. Салфетку делают влажной, но не мокрой;
- не включать телевизор до полного высыхания экрана.
Чем протирать плазменный телевизор в домашних условиях. Приготовить мыльный раствор из детского мыла. Хозяйственное мыло не рекомендуется использовать из-за повышенного содержания щелочи. Мягкой тряпкой без ворса, смоченной в растворе, протереть экран. Хорошо отжатой тканью удалить остатки мыла и протереть экран насухо.
Стоит ли брать плазму?
Самый большой плазменный телевизор в 2010 году компания Panasonic экспонировала на выставке Consumer Electronics Show в Лас-Вегасе. Модель TH-152UX1: диагональ – 152 дюйма (386 см), масса — 580 кг. Плазменная панель выдает разрешение 4096 × 2160 пикселей и умеет показывать 3D-контент.
Плазма будет хорошим выбором, если пользователю нужен экран с большой диагональю за умеренную стоимость. Изображение на плазме с хорошим антибликовым покрытием будет выглядеть лучше в ярко освещенном помещении, чем на ЖК экране с глянцевым покрытием.
На данный момент, выпуском плазменных панелей занимается только Samsung. Так что выбор не велик.
Иное название этого понятия — «PDP (Plasma Display Panel)»; см. также другие значения.Плазменный телевизор
Газоразрядный экран (также широко применяется калька с английского «плазменная панель») — устройство отображения информации, монитор, основанный на явлении свечения люминофора под воздействием ультрафиолетовых лучей, возникающих при электрическом разряде в ионизированном газе, иначе говоря — в плазме. (См. также: SED).
История
Оранжевая монохромная индикаторная панель Digivue в PLATO V, 1981
Плазменная панель была разработана в Университете Иллинойса в процессе создания системы электронного обучения США доктором Дональдом Битцером (Donald Bitzer), Джином Слоттоу (H. Gene Slottow) и Робертом Уиллсоном (Robert Willson)[1]. Патент на изобретение они получили в 1964 году. Первый плоский дисплей состоял из одного пикселя.
В 1971 году компания «Owens-Illinois» приобрела лицензию на производство дисплеев Digivue. В 1983 году Университет Иллинойса продал лицензию на производство плазменных панелей компании IBM.
Первый в мире 21-дюймовый (53 см) полноцветный дисплей представила в 1992 году компания Fujitsu. В 1999 году Matsushita (Panasonic) создала перспективный 60-дюймовый прототип.
Начиная с 2010 года производство плазменных телевизоров сокращалось из-за невозможности конкурировать с более дешевыми LED-телевизорами и в 2014 практически прекратилось[2].
Конструкция
Устройство плазменной панели
Плазменная панель представляет собой матрицу газонаполненных ячеек, заключённых между двумя параллельными стеклянными пластинами, внутри которых расположены прозрачные электроды, образующие шины сканирования, подсветки и адресации. Разряд в газе протекает между разрядными электродами (сканирования и подсветки) на лицевой стороне экрана и электродом адресации на задней стороне.
Особенности конструкции:
- субпиксель плазменной панели обладает следующими размерами: 200 x 200 x 100 мкм;
- передний электрод изготовляется из оксида индия и олова, поскольку он проводит ток и максимально прозрачен.
- при протекании больших токов по довольно большому плазменному экрану из-за сопротивления проводников возникает существенное падение напряжения, приводящее к искажениям сигнала, в связи с чем добавляют промежуточные проводники из хрома, несмотря на его непрозрачность;
- для создания плазмы ячейки обычно заполняются газами — неоном или ксеноном (реже используется гелий и/или аргон, или, чаще, их смеси) с добавлением ртути.
Химический состав люминофора:
- Зелёный: Zn2SiO4:Mn2+ / BaAl12O19:Mn2+;+ / YBO3:Tb / (Y, Gd) BO3:Eu[3]
- Красный: Y2O3:Eu3+ / Y0,65Gd0,35BO3:Eu3+
- Синий: BaMgAl10O17:Eu2+
Существующая проблема в адресации миллионов пикселей решается расположением пары передних дорожек в виде строк (шины сканирования и подсветки), а каждой задней дорожки — в виде столбцов (шина адресации). Внутренняя электроника плазменных экранов автоматически выбирает нужные пиксели. Эта операция проходит быстрее, чем сканирование лучом на ЭЛТ-мониторах. В последних моделях PDP обновление экрана происходит на частотах 400—600 Гц, что позволяет человеческому глазу не замечать мерцания экрана.
Принцип действия
Работа плазменной панели состоит из трёх этапов:
- инициализация, в ходе которой происходит упорядочение положения зарядов среды и её подготовка к следующему этапу (адресации). При этом на электроде адресации напряжение отсутствует, а на электрод сканирования относительно электрода подсветки подаётся импульс инициализации, имеющий ступенчатый вид. На первой ступени этого импульса происходит упорядочение расположения ионной газовой среды, на второй ступени — разряд в газе, а на третьей — завершение упорядочения.
- адресация, в ходе которой происходит подготовка пикселя к подсвечиванию. На шину адресации подаётся положительный импульс (+75 В), а на шину сканирования – отрицательный (-75 В). На шине подсветки напряжение устанавливается равным +150 В.
- подсветка, в ходе которой на шину сканирования подаётся положительный, а на шину подсветки — отрицательный импульс, равный 190 В. Сумма потенциалов ионов на каждой шине и дополнительных импульсов приводит к превышению порогового потенциала и разряду в газовой среде. После разряда происходит повторное распределение ионов у шин сканирования и подсветки. Смена полярности импульсов приводит к повторному разряду в плазме. Таким образом, сменой полярности импульсов обеспечивается многократный разряд ячейки.
Один цикл «инициализация — адресация — подсветка» образует формирование одного подполя изображения. Складывая несколько подполей, можно обеспечивать изображение заданной яркости и контраста. В стандартном исполнении каждый кадр плазменной панели формируется сложением восьми подполей.
Таким образом, при подведении к электродам высокочастотного напряжения происходит ионизация газа или образование плазмы. В плазме происходит ёмкостной высокочастотный разряд, что приводит к ультрафиолетовому излучению, которое вызывает свечение люминофора: красное, зелёное или синее. Это свечение, проходя через переднюю стеклянную пластину, попадает в глаз зрителя.
Преимущества и недостатки
Преимущества:
- высокая контрастность;
- глубина цветов;
- стабильная равномерность на чёрном и белом цвете;
Недостатки:
- более высокое энергопотребление в сравнении с ЖК-панелями;
- крупногабаритные пиксели и, как следствие, только достаточно крупногабаритные плазменные панели обладают достаточным экранным разрешением;
- выгорание экрана от неподвижного изображения (эффект памяти), например, от логотипа телеканала (происходит из-за перегрева люминофора и последующего его испарения).
Примечания
Ссылки
Эта страница в последний раз была отредактирована 4 июня 2020 в 21:14. Используемые источники:
- https://rem-tv.net/publ/3-1-0-39
- https://tehpribory.ru/glavnaia/elektronika/plazmennaia-panel.html
- https://viktorkorolev.ru/plazmennaya-panel-ustrojstvo-princip-raboty-vozmozhnye-neispravnosti/
- https://monitorov.net/televizory/plazmennyj-televizor
- https://wiki2.org/ru/плазменная_панель